

- divisible by 3 are disjoint sets.
- 18. Let A = $\{1, 2, \{3, 4\}, 5\}$. State as 'True' or 'False' for the following statements.1 $\{3, 4\} \subset A$
- 19. If X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, write A subset of X that contains all prime 1 numbers.

- 20. Taking the set of natural numbers as the universal set, write down the complements of the following sets: {*x* : *x* is a prime number}
- 21. If $A = \{2x : x \in N\}$, $B = \{3x : x \in N\}$, $C = \{5x : x \in N\}$, then find $: B \cap C$ 1

1

1

22. From the adjoining Venn diagram, determine the following set A - B.

23. Given a universal set U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Find the complement of each of the following : 1 C = ϕ .

24. Which of the following are examples of the null set ? Set of even prime numbers	1
25. Write the following as intervals : $\{x : x \in \mathbb{R}, -4 < x \le 6\}$	1
26. Write the following intervals in set-builder form : $(-3, 0)$	1
27. Write the following intervals in set-builder form : $[-23, 5)$	1
 28. Find the union of each of the following pairs of sets : A = {x : x is a natural number and multiple of 3} B = {x : x is a natural number less than 6} 	1
29. Find the union of each of the following pairs of sets : $A = \{x : x \text{ is a natural number and } 1 < x \le 6\}$ $B = \{x : x \text{ is a natural number and } 6 < x \le 10\}$	1
30. Taking the set of natural numbers as the universal set, write down the complements of the following sets: { <i>x</i> : <i>x</i> is an even natural number}	1
31. Taking the set of natural numbers as the universal set, write down the complements of the following sets: { <i>x</i> : <i>x</i> is a prime number}	1
32. Taking the set of natural numbers as the universal set, write down the complements of the following sets: { <i>x</i> : <i>x</i> + 5 = 8}	1
33. Taking the set of natural numbers as the universal set, write down the complements of the following sets: $\{x : x \in \mathbb{N} \text{ and } 2x + 1 > 10\}$	1
34. Let U be the set of all triangles in a plane. If A is the set of all triangles with at least one angle different from 60°, what is A'?	1
35. Write the following set in the roster form. A = {x x is a positive integer less than 10 and 2 ^x − 1 is an odd number}	1
36. Given that N = {1, 2, 3,, 100}, then write the subset B of N, whose element are represented by $x + 2$, where $x \in N$.	1
37. State the given statement is true or false. Justify your answer. $35 \in \{x \mid x \text{ has exactly four positive factors}\}.$	1
38. State the given statement is true or false. Justify your answer. $128 \in \{y \mid \text{the sum of all the positive factors of } y \text{ is } 2y\}$	1

 39. State the given statement is true or false. Justify your answer. 3 ∉ {x x⁴ - 5x³ + 2x² - 112x + 6 = 0} 	1
40. State which of the following statements are true and which are false. Justify your answer. 496 ∉ {y the sum of all the positive factors of y is 2y}.	1
41. If X = {1, 2, 3}, if <i>n</i> represents any member of X, write the set containing all number represented by 4 <i>n</i>	1
42. If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by <i>n</i> + 6	1
43. If X = {1, 2, 3}, if <i>n</i> represents any member of X, write the set containing all number represented by $\frac{n}{2}$.	1
 44. If X = {1, 2, 3}, if n represents any member of X, write the set containing all number represented by n − 1 	1
45. Find x and y, if $(x + 3, 5) = (6, 2x + y)$.	1
^{46.} If $f(x) = x^2$, find $\frac{f(1.1) - f(1)}{(1.1 - 1)}$.	1
47. If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.	1
48. A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd, $x \in A$ and $Y \in B$ }. Write R in roster form.	1
^{49.} Find domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$.	1
^{50.} What is the domain of the real valued function $f(x) = \frac{1}{3x-2}$?	1
51. If $f(x) = x^2$ and $g(x) = 2x + 1$ are two real functions. Find $(f + g)(x)$.	1
52. If f and g are two functions over real numbers defined as $f(x) = 3x + 1$, $g(x) = x^2 + 2$, then find $f + g$	1
53. If $\left(\frac{x}{3} + 1, y - \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y.	1
54. Is the given relation a function ? Give reasons for your answer. h = {(4, 6), (3, 9), (–11, 6), (3, 11)}	1
55. Is the given relation a function ? Give reasons for your answer. $f = \{(x, x) \mid x \text{ is a real number}\}$	1
56. Is the given relation a function ? Give reasons for your answer. $g = \left\{ \left(n, \frac{1}{n}\right) \mid n \text{ is a positive integer} \right\}$	1

57. Is the given relation a function ? Give reasons for your answer.1 $s = \{(n, n^2) \mid n \text{ is a positive integer}\}$

- 58. Is the given relation a function ? Give reasons for your answer. $t = \{(x, 3) \mid x \text{ is a real number}\}\$
- 59. Let f and g be real functions defined by f(x) = 2x + 1 and g(x) = 4x 7. For what real numbers x, 1 f(x) = g(x)?

1

60. Let f and g be real functions defined by f(x) = 2x + 1 and g(x) = 4x - 7. 1 For what real numbers x, f(x) < g(x)?